При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Установите соответствие между каждой физической величиной и её характеристикой. Правильное соответствие обозначено цифрой:

А. ИмпульсБ. СилаВ. Мощность	1) скалярная величина 2) векторная величина
---	---

1) A2 52 B1

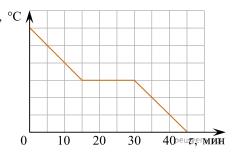
1/6

- 2) A2 B1 B1
- 3) A1 B2 B2
- 4) A1 52 B1
- 5) A1 Б1 B2
- **2.** Звуковой сигнал, посланный эхолокатором в момент времени $t_1 = 0$ с, отразился от препятствия, возвратился обратно в момент времени $t_2 = 2,66$ с. Если модуль скорости распространения звука в воздухе v = 340 м/с, то расстояние L от локатора до препятствия равно:

- 1) 100 m 2) 224 m 3) 452 m 4) 581 m 5) 649 m
- 3. По параллельным участкам соседних железнодорожных путей в одном направлении равномерно двигались два поезда: пассажирский и товарный. Модуль скорости пассажирского поезда $\upsilon_1=44~{{
 m KM}\over {
 m q}}$, товарного – $\upsilon_2=80~{{
 m KM}\over {
 m q}}$. Если длина товарного поезда $L=0,60~{
 m kM}$, то пассажир, сидящий у окна в вагоне пассажирского поезда, заметил, что он проехал мимо товарного поезда за промежуток времени Δt , равный:
 - 1) 17 c 2) 27 c 3) 38 c
- 4) 49 c
- 5) 60 c

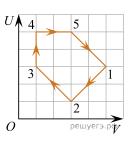
5) 4,0

- **4.** Абсолютное удлинение Δl_1 первой пружины в два раза больше абсолютного удлинения Δl_2 второй пружины. Если потенциальные энергии упругой деформации этих пружин равны ($E_{\Pi 1}$ $=E_{\Pi 2}$), то отношение жесткости второй пружины к жесткости первой пружины $\frac{k_2}{k_1}$ равно:
 - 1) 1,0
- 2) \sqrt{2} 3) 1,7

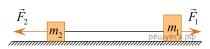

- 5. С башни в горизонтальном направлении бросили тело с начальной скоростью, модуль которой $v_0 = 6$ м/с. Через промежуток времени $\Delta t = 0.8$ с после момента броска модуль скорости vтела в некоторой точке траектории будет равен:

 - 1) 2 m/c 2) 4 m/c 3) 6 m/c
- 4) 8 m/c
 - 5) 10 м/c
- **6.** Шар объемом $V = 16.0 \text{ дм}^3$, имеющий внутреннюю полость объёмом $V_0 = 15.0 \text{ дм}^3$, плавает в воде ($\rho_1 = 1.0 \cdot 10^3 \text{ кг/м}^3$), погрузившись в нее ровно наполовину. Если массой воздуха в полости шара пренебречь, то плотность ρ_2 вещества, из которого изготовлен шар, равна:

Примечание. Объём V шара равен сумме объёма полости V_0 и объёма вещества, из которого изготовлен шар.

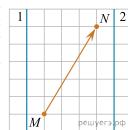


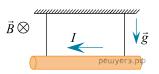
- 1) $2.5 \cdot 10^3 \text{ Ke/m}^3$ 2) $4.0 \cdot 10^3 \text{ ke/m}^3$ 3) $5.5 \cdot 10^3 \text{ ke/m}^3$ 5) $8.0 \cdot 10^3 \text{ kg/m}^3$
- **7.** В момент времени $\tau_0 = 0$ мин жидкое вещество начали охлаждать при постоянном t, °C давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени т. Две трети массы вещества закристаллизовалась к моменту времени τ_1 , равному:


- 1) 10 мин 2) 15 мин
- 3) 20 мин
- 4) 25 мин
- 5) 40 мин
- **8.** Если в объёме V = 1,0 дм³ некоторого вещества (M = 56 г/моль) содержится $N = 8.4 \cdot 10^{25}$ молекул, то плотность ρ этого вещества равна:
 - 1) 1.0 r/cm^3 2) 2.7 r/cm^3 3) 5.6 r/cm^3 4) 7.8 r/cm^3 5) 8.7 r/cm^3

9. С идеальным одноатомным газом, количество вещества которого постоянно, провели процесс $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$. На рисунке показана зависимость внутренней энергии U газа от объема V. Укажите участок, на котором количество теплоты, полученное газом, шло только на приращение внутренней энергии газа:

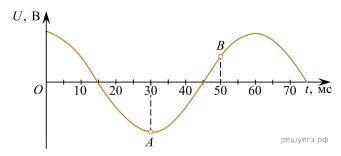
- 1) $1 \rightarrow 2$ 2) $2 \rightarrow 3$
- 3) $3 \rightarrow 4$
- 4) $4 \rightarrow 5$
- 5) $5 \rightarrow 1$


- 10. Единицей магнитного потока в СИ, является:
 - 1) 1 Φ
- 2) 1 Кл
- 3) 1 Ом
- 4) 1 Вб
- 5) 1 A
- 11. Лифт начал подниматься с ускорением, модуль которого a=1,2 м/с². В некоторый момент с потолка кабины лифта оторвался болт. Если высота кабины h=2,4 м, а болт переместился относительно поверхности Земли за время его движения в лифте вертикально вверх на $\Delta r=80$ см, то модуль скорости V движения лифта в момент отрыва болта равен ... дм/с.
- **12.** Два груза, находящиеся на гладкой горизонтальной поверхности, связаны легкой нерастяжимой нитью (см. рис.). Грузы приходят в движение под действием сил, модули которых зависят от времени по закону: $F_1 = At$ и $F_2 = 2At$, где A = 1,60 H/c. Нить разрытовать и модули предусму t = 10.0 студять приходия и модули предусму t = 10.0 студять предусму t = 10

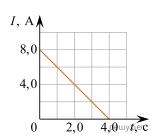

вается в момент времени t=10,0 с от начала движения, и модуль сил упругости нити в момент разрыва $F_{\rm ynp}=25,0$ Н. Если масса первого груза $m_1=900$ г, то масса m_2 второго груза равна... г.

- 13. Тело свободно падает без начальной скорости с высоты h=17 м над поверхностью Земли. Если на высоте $h_1=2,0$ м кинетическая энергия тела $E_{\rm K}=1,8$ Дж, то масса m тела равна ... Γ .
- **14.** Два тела массами $m_1 = 2{,}00$ кг и $m_2 = 1{,}50$ кг, модули скоростей которых одинаковы ($\upsilon_1 = \upsilon_2$), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой $u = 5{,}0$ м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- 15. Зависимость координаты x пружинного маятника, совершающего колебания вдоль горизонтальной оси Ox, от времени t имеет вид $x(t) = A\cos(\omega t + \varphi_0)$, где $\omega = \frac{5\pi}{3} \frac{\mathrm{pag}}{\mathrm{c}}$, $\varphi_0 = \frac{\pi}{3}$ рад. Если полная механическая энергия маятника E = 16 мДж, то в момент времени t = 1,2 с кинетическая энергия E_{κ} маятника равна ... мДж.

- **16.** Два одинаковых одноименно заряженных металлических шарика находятся в вакууме на расстоянии r=12 см друг от друга. Шарики привели в соприкосновение, а затем развели на прежнее расстояние. Если модуль заряда второго шарика до соприкосновения $|q_2|=2$ нКл, а модуль сил электростатического взаимодействия шариков после соприкосновения F=10 мкH, то модуль заряда $|q_1|$ первого шарика до соприкосновения равен ... нКл.
- 17. При изотермическом расширении идеального одноатомного газа, количество вещества которого постоянно, сила давления газа совершила работу $A_1=1,00$ кДж. Если при последующем изобарном нагревании газу сообщили в два раза больше количество теплоты, чем при изотермическом расширении, то работа A_2 , совершенная силой давления газа при изобарном нагревании, равна ... Дж.
- **18.** На горизонтальной поверхности Земли стоит человек, возле ног которого лежит маленькое плоское зеркало. Глаза человека находятся на уровне H=1,8 м от поверхности Земли. Если угол падения солнечных лучей на горизонтальную поверхность $\alpha=45^{\circ}$, то человек увидит отражение Солнца в зеркале, когда он отойдёт от зеркала на расстояние l, равное ... дм.
- 19. На рисунке изображён участок плоского конденсатора с обкладками 1 и 2, которые перпендикулярны плоскости рисунка. Если при перемещении точечного положительного заряда q=10 нКл из точки M в точку N электрическое поле конденсатора совершило работу A=240 нДж, то разность потенциалов $\phi_1-\phi_2$ между обкладками равна ... В.



20. В однородном магнитном поле, модуль магнитной индукции которого B=0,20 Тл, на двух невесомых нерастяжимых нитях подвешен в горизонтальном положении прямой проводник (см.рис.). Линии индукции магнитного поля горизонтальны и перпендикулярны проводнику. После того как по проводнику пошёл ток I=5,0 А, модуль силы натяжения $F_{\rm H}$ каждой нити


увеличился в три раза. Если длина проводника l=0,60 м, то его масса m равна ... Γ .

21. Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}=30$ мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}=50$ мс равно $U_{\rm B}$. Если разность напряжений $U_{\rm B}-U_{\rm A}=72$ В, то действующее значение напряжения $U_{\rm A}$ равно ... **B**.

- **22.** Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=10 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|=100$ пКл) шарик массой m=380 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=19.0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=100 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.
- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~{\rm cyr.}$, то $\Delta N=90000$ ядер $^{133}_{54}$ Xe распадётся за промежуток времени Δt , равный ... cyr.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 A, C=-0,50 $\frac{\rm A}{\rm c}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.

- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью \vec{v} . Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{v}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости v движения электроскутера равен ... $\frac{\text{M}}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7,0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.

6/6